

BDL Compact Vessel Cleaner (CVC): Final Proposal

Team 2

Our Team

Steven Schwartz Team Lead, Logistics Manager, BDL Research Assistant

Milo Gubler CAD Developer

Mason Minitti Website Developer, Finance Manager

Muath Nasrallah Project Assistant **Tim Becker, PhD** Project Client, BDL Principal Investigator Mana Alyami Team Mentor, BDL Research Associate

NAL NORTHERN ARIZONA UNIVERSITY

Project Description

- Goal: To develop a pump system capable of cleaning 3D support material from vasculature models and improve flow model conditions.
- The flow model is used to simulate physiological conditions of the circle of willis for in-vitro ("within lab") medical device deployment.

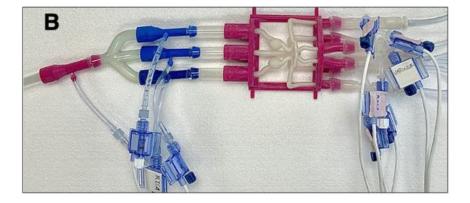


Figure 1: Circle of Willis Model with Pressure Transducers

• The Bioengineering Devices Lab (BDL) is an NAU research lab that focuses on biomaterials and medical device testing for aneurysm treatment.

Design State

- Cleaning process of model:
 - Clear exterior support with gloves
 - Pre-clear interior support of introducers using electric screwdriver
 - Inject 0.5 mol NaOH into interior and let support soak for over ten minutes
 - Use pump system to push out interior support with water.
- Completion of design validation and further physical prototyping before construction phase is complete

Prototype Image

 Preliminary Design created by Mentor with filter added by Capstone team.

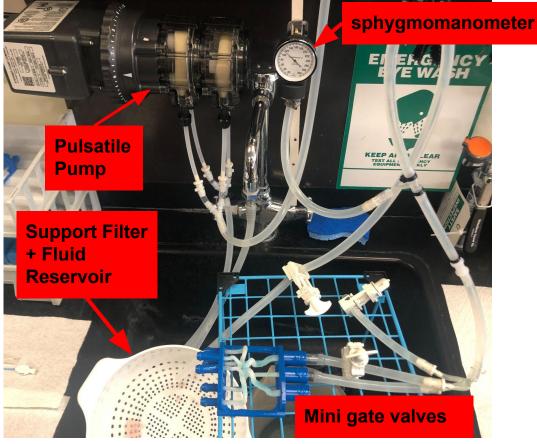


Figure 2. Preliminary CVC

System Demonstration

• Model Video: <u>https://www.youtube.com/watch?v=E9E_IJSB6IU</u>

Prototype Image

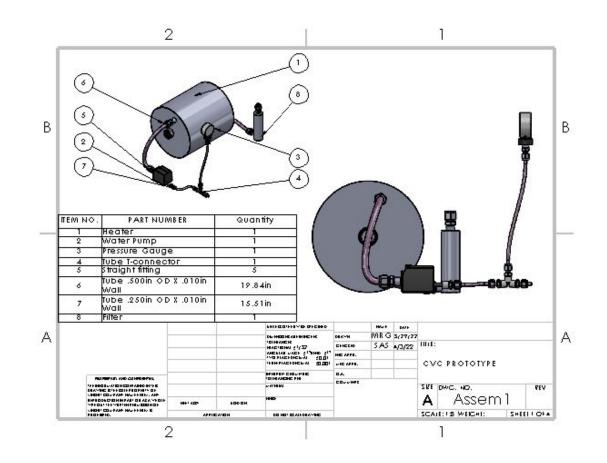


Figure 3. Prototype Assembly

Customer Requirements

- Fulfilled Customer Requirements:
 - Filter keeps support material from flowstream (minimized pump damage)
 - Heating element, fluid reservoir, and pump are included (needs design validation)
 - Within budget

Engineering Requirements

- Fulfilled Requirements:
 - Sphygmomanometer measures 100-200 mmHg during demonstration.
 - Power input no larger than standard wall outlet, 120V.
 - Mesh size for support material filter, <4mm.
- To be met
 - Maximum temperature of 80°C.
 - Flow rate (TBD).

Bill of Materials



Table 1: Prototype BOM

Item #	Part Number	Quantity	Cost	Sum	
1	Reservoir + Heater	1	\$70	\$70	
2	Water Pump	1	\$30	\$30	
9	Pressure Gauge	1	\$30	\$30	
4	Tube T-connector	1	\$0.25	\$0	
5 Straight fitting		1	\$1.00	\$1	
e	Tube 0.5 in. OD w/ 0.10 wall	1.65333333	\$1.50	\$2.48	
7	7 Tube 0.5 in. OD w/ 0.10 wall	1.2925	\$1.50	\$1.94	
8	Filter	1	\$50	\$50	
				\$186	

Design Validation - FMEA

Table 2: FMEA 1 BDL CVC

Product Name	Compact vessel cleaner	Development Team			Page No 1 of 1				
System Name	N/A	BDL CVC Spring 2022 Capstone			FMEA Number	1.14	1		
Subsystem Name	N/A				Date	3/27/2022			
Component Name	N/A	ŝ			3	2	Ş.		
Part # and Functions	Potential Failure Mode	Potential Effect(s) of Failure	Severity (S)	Potential Causes and Mechanisms of Failure	Occurance (O)	Current Design Controls Test	Detectio n (D)	RPN	Recommended Action
1-Reads pressure			1		1	Visual	1	1	
2-moves the fluid through system	High Cycle Fatigue	System failure	8	Poor maintenance,	4	Visual	3	96	Testing
3-Holds the fluid for the system	Thermal Fatigue	Leaking, Human injury, Incomplete operation	5	Surpass maximum teoerature	3	Visual	3	45	Material Specification
4-Takes out impurities in the fluid	Corosive wear	Impure fluid, Dammage the pump or heating system	5	Poor maintenance	2	Visual	6	60	Reg <mark>ular maintenance</mark>
5-Removes support material from fluid	Corosive wear	Impure fluid, Dammage the pump or heating system	5	Poor maintenance	1	Visual	2	10	
6-Collects support material			3		1	Visual	1	3	
7-Connects componets and allows fluid to travel between components	Thermal Fatigue	Leaking, Incomplete operation	6	Poor maintenance, Assembly errors, Surpass maximum tenerature	2	Visual, Pressure reading	2	24	Material Specification
8-Heats fluid	Thermal Fatigue	Support material wont be removed	8	Electrical current too high	4	Visual, Tempertaur reading	3	96	Testing
and the property sector	Electrical Overstress	Automation failure	3	Poor maintenance, overstressing	2	Visual	1	6	
10-Reads temperature for the system			1		1	Visual	1	1	

NAU NORTHERN ARIZONA UNIVERSITY

Design Validation : Component Testing

Heating Component (ME 495)

- Testing- Voltage required to reach maximum temperature ER.
- Testing- Measuring output temperature from heating system.
 - The temperature as a function of time: T $(t)=T_{\infty}+(T_0-T_{\infty})e^{-t\tau}$

Pump Component (ME 495)

- Testing- Minimum flow rate required to reach maximum pressure ER, with respect to tubing type.Poiseuille equation $\Delta P=QR, R=(128\mu L)/(\pi (ID)^4)$
- Testing- Measuring output pressure from exit plane of tubing at vessel connection.

Design Validation: Model Testing

Full system testing:

- Procedure 0 Functionality of all system components
- Procedure 1- Clean a control model (consistent geometry)
- Procedure 2 Clean restriction model (area reduction)
- Procedure 3 Clean Circle of Willis model (irregular geometry)

Figure 3: Control Model

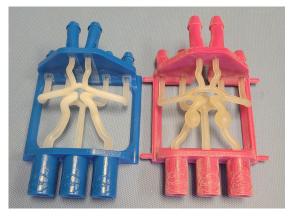


Figure 4: Circle of Willis Model

Left: No Aneurysms, Right: With Aneurysms NAL NORTHERN ARIZONA UNIVERSITY

Design Validation - Resources

Equipment

- \circ Tubing
- Arduinos
- Fountain pump
- Thermocouple
- Pitot tube
- Pressure Transducers
- Data Acquisition (DAQ) Module
- Engineering Computers (BDL & 495 Lab)
- Machine Shop Equipment

Spaces

- ME 495 Lab
- BDL Lab (Bldg. 210)
- Machine Shop (Bld. 98C)

Resources

- ME 495 Lab TA's and instructors
- Mana Alyami
- LabVIEW 2020
 (BDL & 495 Lab)
- Solidworks 2020

Schedule (Remaining)

<u>https://docs.google.com/spreadsheets/d/1FVUyg-aU-zs20mbjo1</u>
 <u>faa_6WLSn-YZ80FPxUktBRjFs/edit?usp=sharing</u>

Figure 5: Gantt Chart
NAU NORTHERN ARIZONA UNIVERSITY

Schedule (Fall term)

- Currently behind schedule for design validation.
- Will be on schedule after validating design.

Budget

Total Budget: \$1500


- Items Purchased:
 - Fountain Pump: \$30
- Anticipated Expenses: \$500
 - Breakdown on next page

Remaining Budget: \$1470

Budget (Continued)

Remaining Budget: \$1,470

- Anticipated Expenses: \$500
 - Medical Tubing: \$0.75-2/foot, 10-25 feet
 - Vessel Prints: \$0.40/gram
 - Heating Element: \$30-\$50
 - Frame Manufacturing (will vary, low priority)
- Contingency Budget: \$970
 - Fountain/Pulsating Pumps Replacement
 - Other Replacements

Thank You

